Rysunki utworzono za pomocą programu C.a.R. Można przesuwać suwaki i 'wypełnione' punkty.
Kwadrat w trójkącie zazwyczaj spotykamy w położeniu takim, jak na poniższym rysunku. Jego jeden bok jest zawarty w jednym boku trójkąta, a pozostałe dwa wierzchołki leżą na pozostałych dwóch bokach trójkąta.
Można łatwo wyznaczyć długość x boku takiego kwadratu leżącego w trójkącie równobocznym o boku a.
Wskazówka 1. Wystarczy zapisać podobieństwo trójkątów ABC i LMC.
Wskazówka 2. Niech h oznacza wysokość trójkąta ABC opuszczoną z C.
Jaka jest wysokość trójkąta LMC opuszczona z C?
Odpowiedź.
x = ah / (a+h) = ...
= a(2 - 3) .
Trudniejszym zadaniem jest wyznaczenie tak położonego kwadratu. Podaj konstrukcję kwadratu leżącego w trójkącie w opisany wyżej sposób.
Odpowiedź.
Przedstawimy nietypową konstrukcję.
Uczniowie mogą jednak zadać
Kłopotliwe pytanie 1. Czy kwadrat leżący w ten sposób w trójkącie równobocznym jest największym z kwadratów w nim zawartych?
Odpowiedź?
Poniższe rozumowanie pokazuje, że jeśli prostokąt KLMN leży w (dowolnym) trójkącie ABC tak, że żaden z boków nie zawiera się w obwodzie trójkąta, to ten prostokąt nie jest największym z możliwych.
Można prostokąt KLMN nieco obrócić wokół punktu S
(będącego przecięciem prostopadłych do boków w punktach K i L). Po takim małym obrocie w odpowiednią stronę (w którą? od czego to zależy?) wszystkie wierzchołki leżą we wnętrzu trójkąta.
Zatem ten obrócony prostokąt K'L'M'N' można jeszcze nieco powiększyć w obrębie trójkąta.
Powyższe rozumowanie dawałoby kompletne uzasadnienie pozytywnej odpowiedzi na kłopotliwe pytanie 1, gdybyśmy wiedzieli, że
wśród kwadratów zawartych w danym trójkącie
istnieje kwadrat o największym boku.
Pojęcie zwartości poznawane na studiach matematycznych daje krótką argumentację. Ale jak to opowiedzieć w szkole?
Trudna sprawa, kłopotliwe pytanie.
(Nie roztrząsam tutaj tego problemu. Gdy uczeń tak zapyta, odpowiem mu... na przerwie.)
Kłopotliwe pytanie 2. Czy w każdym trójkącie największy kwadrat w nim zawarty ma wszystkie wierzchołki leżące na obwodzie trójkąta?
Wskazówka
Nie.
Odpowiedź
Patrz.
Kłopotliwe pytanie 3. Czy kwadrat leżący w opisany wyżej sposób w trójkącie równobocznym ma największe pole spośród wszystkich prostokątów zawartych w tym trójkącie?
Urszula Marciniak - absolwentka matematyki na Uniwersytecie Warszawskim, założycielka wydawnictwa Logi (które działa już od 20 lat), propagatorka łamigłówek logicznych i kultury matematycznego myślenia. Zmarła w 2016 roku w wieku zaledwie 39 lat. Upamiętnia ją rozgrywany od 9 lat w rocznicę jej urodzin łamigłówkowy Memoriał.
W styczniu rozegrano eliminacje do IX edycji Memoriału Urszuli Marciniak. Na Dolnym Śląsku przystąpiło do nich ponad 2300 uczniów z ponad 120 szkół oraz ponad 150 zawodników dorosłych. Zawody finałowe odbędą się w marcu, w ośmiu miastach akademickich w Polsce.
Asia i Basia grają w następującą grę: na przemian piszą na tablicy cyfry (od lewej do prawej), aż do uzyskania liczby 2025-cyfrowej. Asia wygrywa, jeśli uzyskana liczba będzie mieć dzielnik postaci 17...7. Kto ma strategię wygrywającą w tej grze?
W styczniu zapraszamy na warsztaty Piotra Pawlikowskiego z Kluczborka - nauczyciela i modelarza. Uczestnicy wykonają niezwykłe papierowe kumiko o ciekawych własnościach matematycznych.
André Ampére, francuski fizyk i matematyk (1775-1836), stwierdziwszy pewnego razu brak zegarka, wysłał list do przyjaciela, u którego spędził ostatni wieczór. Zapytywał w nim, czy przypadkiem nie zostawił u niego zegarka. Adresat, przeczytawszy list, zobaczył w postscriptum: Przed chwilą znalazł się mój zegarek, więc nie trudź się poszukiwaniem.